Exercise 32

Find an equation of the tangent line to the given curve at the specified point.

$$
y=\frac{1+x}{1+e^{x}}, \quad\left(0, \frac{1}{2}\right)
$$

Solution

Start by finding the slope of y at $x=0$. Evaluate the derivative using the quotient rule.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(\frac{1+x}{1+e^{x}}\right) \\
& =\frac{\left[\frac{d}{d x}(1+x)\right]\left(1+e^{x}\right)-\left[\frac{d}{d x}\left(1+e^{x}\right)\right](1+x)}{\left(1+e^{x}\right)^{2}} \\
& =\frac{(1)\left(1+e^{x}\right)-\left(e^{x}\right)(1+x)}{\left(1+e^{x}\right)^{2}} \\
& =\frac{1-x e^{x}}{\left(1+e^{x}\right)^{2}}
\end{aligned}
$$

Evaluate it at $x=0$.

$$
y^{\prime}(0)=\frac{1}{4}
$$

Therefore, the equation of the line with slope $1 / 4$ that goes through $\left(0, \frac{1}{2}\right)$ is

$$
y-\frac{1}{2}=\frac{1}{4}(x-0) .
$$

